domingo, 27 de septiembre de 2015

Las propiedades de los números imaginarios

A pesar de que Descartes originalmente usaba el término “números imaginarios” para referirse a lo que hoy en día se conoce como números complejos, el uso común en la actualidad de los números imaginarios significa un número complejo cuya parte real es igual a cero. Para clarificar y evitar confusiones, tales números muchas veces son mejor llamados números imaginarios puros. Para dar de los números imaginarios una definición, podríamos decir que es un número cuya potenciación es negativa. Es decir que cuando se eleva al cuadrado o se multiplica por sí mismo, su resultado es negativo. La suma de los números imaginarios es cerrada, lo cual significa que si se suman dos números imaginarios, el resultado también será un número imaginario. Tiene una propiedad conmutativa, el orden de los sumandos no altera la adición. También una propiedad distributiva, donde la suma de dos números multiplicada por un tercer número es igual a la suma del producto de cada sumando multiplicado por el tercer número.

Durante la sustracción, por cada número imaginario, existe un número negativo cuya adición dará como resultado cero. Existe un número neutro que al ser sumado a cualquier número, el resultado será el mismo número.

No hay comentarios.:

Publicar un comentario